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R .  K .  Mehraand A. E. Bryson, J r .  

Division of Engineering and Applied Physics  

Har var  d University Cambridge , Mas sac  hus e tt s 

ABSTRACT 

Conjugate gradient methods have recently been applied to some 

simple optimization problems and have been shown to converge faster 

than the methods of steepest descent. 

application of these methods to more  complicated problems involving 

terminal  as well as in-flight constraints.  

suggested to handle these constraints and the numerical  difficulties 

associated with each method a r e  discussed. The problem of flight- 

path optimization of a V/STOL a i rc raf t  has  been considered and 

minimum t ime paths for the climb phase have been obtained using 

the conjugate gradient algorithm. In conclusion, some remarks  are 

made about the relative efficiency of the different optimization schemes 

presently available for the solution of optimal control problems. 

The present paper considers 

A number of methods are 



I. Introduction 

Hestenes and Stiefel (1) in 1952 introduced the method of con- 

jugate gradients for  solving linear s e t s  of equations. 

was used by Fletcher and Reeves ( 2 )  i n  1964 to solve nonlinear pro-  

gramming problems. 

solution of linear problems on Hilbert spaces. 

Rheinboldt (4)  derived in 1962 convergence ra tes  for these problems 

and showed that convergence i s  obtained in  a finite number of steps for 

the linear-quadra c problem. Improved estimates of ra tes  of con- 

vergence were obtained by Daniel (5)  in  1965. Lasdon, Mitter and 

Warren  (6)  applied this method in 1966 to the solution of optimal 

control problems. 

converged faster  than the steepest-descent method on a number of 

problems. 

of the conjugate gradient method and gave s imilar  resul ts .  

addition, they extended the method to  handle l inear terminal  con- 

s t ra int  s. 

The same method 

Hayes ( 3 )  extended the method in  1954 to the 

Antosiewicz and 

They showed that the conjugate gradient method 

Sinnott and Luenberger ( 7 )  recently used another variant 

In 

Most of the optimal control problems solved so far  (6, 7) using 

conjugate gradient methods have been simple in  s t ructure  involving 

either no o r  very few terminal constraints.  Lasdon, Warren  and 

Rice (8) have t r ied using a n  extension of the Fiacco-McCormick 

"Sequential Unconstrained Minimization Technique ' '  to handle in- 

flight inequality constraints, but the resul ts  were not too satisfactory 

for the problem of range-maximization of a re-entry vehicle. 

problem was originally solved by Bryson and Denham ( 9 )  using the 

method of steepest-descent). 

(This 

Speyer, Mehra and Bryson (10)  solved 



the same problem using a separation technique to handle the s ta te-  

variable inequality constraint .  This separation method has  been 

described i n  detail in reference 10. It will be briefly outlined in  

section Iv along with other methods for handling in-flight constraints 

Some of these methods wi l l  then be applied in  section V to the flight 

path optimization of a V/STOL a i rc raf t .  

11. Conjugate Gradient Methods 

a )  Pa rame te r  Optimization: Conjugate gradient methods have the 

property that they m, iimize a quadratic function of n variables in n 

or  l e s s  number of steps.  They do so  by generating a set  of n directions 

known a s  conjugate directions which span the n-dimensional space.  

Let the function t o  be minimized be J = $ (x - h)  T A(x - h)  and let  

P0 ,Pl '  * .  . 'Pn-l  be  n vectors  in Euclidean n space.  

called "A-orthogonal" o r  !'A-conjugate", iff 

They will be 

i # j  
T 
l J  

p. Ap.  = 0 ,  

where A is a positive definite mat r ix .  

Therefor e ,  

PTAP~ > 0 ,  i i p .  1 + o 
It i s  easy to  show that n f 'A-conjugate ' '  vectors  a r e  l inearly inde- 

pendent and form a basis  for the n-dimensional space.  If xo is the 

initial guess ,  then (h - x ) can be expressed  in  t e r m s  of this bas i s  

a s  follows: 

0 

n- 1 
r- 

h - x  0 =t a i p i  

i = O  

I- I- 

T T 1 

Pi AP; P i  APi 

( 3 )  

, 



All conjugate gradient methods generate conjugate directions in  one o r  

another way. 

Gram-Schmidt orthogonalization procedure start ing from any a rb i t r a ry  

of vectors. It can be shown that i f  v. a r e  the set  v 

coordinate vectors,  then the conjugate gradient method is functionally 

equivalent to the gaussian elimination procedure.  

venient choice for 

vectors  r : 

Basically conjugate directions p. can be generated by a 
1 

o’ - * * 9 vn- 1 1 

But the most  con- 

is the negative gradient vectors o r  the residue 
1 

i 

r .  = -gi = A(h - xi) ( 5 )  1 

This choice leads to a number of simplifications and, finally the 

following algorithm i s  obtained. 

in  Beckman (20) .  

x a rb i t r a ry  
0 

- 
Po - go 

= x. t a .p .  i t 1  1 1 1  
X 

Details of the proof can be found 

T 
-Pi gi 

where a = i T  
Pi APi 

This algorithm can be used for nonlinear programming problems 

as well. However, the mat r ix  A is no longer a! conatant mat r ix  and has  to 

be computed a t  each step. One can avoid this by noting that i f  J is 

minimized along the direction (xi f c .P . )  with respect to c 

mum value of e .  is exactly a. ( 2 0 ) .  

gradient method becomes a steepest descent method. 

the opti- 

Notice that i f  p.  = 0, the conjugate 

1 1  i’ 

1 1 1 
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The conjugate gradient algorithm has a number of interesting 

properties.  

and shows that it i s  the best  method amongst a c lass  of i terative 

gradient procedures for solving linear sets  of equations. If e. denotes 

the e r r o r  vector (h  - xi), i t  can be shown that 11 eitl 11 < 11 ei IIVi. Also, 

i t  can be shown that J is decreased a t  each step. 

is the projection of the negative gradient vector g on to the subspace 

spanned by p 

dimension of the subcpace onto which -g. is projected. 

convergence in a finite number of steps.  

b)  Optimal Control Problems:  Conjugate gradient methods can be 

readily extended to Hilbert spaces (3 ,  5). 

i n  the Calculus of Variations: Find u( t )  to 

Rutishauser (1 1)  compares i t  with other gradient methods 

1 

Geometrically, p. 
1 

i 

. Thus we successively reduce the i’ Pi+l’ * ’ * 9Pn-l 

This gives 
1 

Consider the Mayer problem 

minimize J = (b(x(tf)) 

subject to k = f(x, u, t). (8) 

x(t ) and t a r e  given, but x(t  ) is  f ree .  
0 f f 

x is  an  n x  1 state vector and u is  a n  r x 1 control vector, 

both functions of t ime variable t .  

( 9 )  T The Hamiltonian of the system i s  H = 1 f , 

(1 0) T and the adjoint equations a r e  A = - f  h 
X 

Let 
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g is a vector of functions and re la tes  63 to  6u (1 3, chapter 11). 

c 

6J = f g6udt (1 3) 

g plays the role of gradient vector i n  the finite dimensional 

case.  

The same algorithm (equations 6 and 7 )  applies except that the scalar  

tf 
2 T multiplications a r e  changed to integrations. E. g . ,  11 gi 11 = [ gi gi dt . 

J 

c )  Computation Details: A fourth order  Runga-Kutta scheme is used to in- 

teg'rate the Euler-Lagrange Equations. It i s  necessary to s tore  a 

direction of search to calculate the next direction of search. A cubic 

interpolation scheme (2 )  is used for one-dimensional search. It uses  all 

a J b i )  aJ(ui+l) 
to fit 

i aa the information available, i. e . ,  J(ui) ,  J (u i f l ) ,  aa 

i. e . ,  the curve i t l '  the "smoothest curvet1 through the points u. and u 
1 

a. 

which minimizes the integral  1 9 d r  where a. is the step size.  
1 

0 

III. Terminal Constraints 

The conjugate gradient algorithm as given above applies only to 

unconstrained minimization problems. Modifications to the algorithm 

a r e  necessary when there a r e  constraints on the problem. A fairly 

general  optimization problem with terminal  constraints can be stated 

a s  follows: Find u(t)  to 

minimize J = +(x(tf), t f )  

subject to k = f(x,u, t )  ; x(t ) given 
0 

-5- 



s2(x(tf), t f )  = 0 stopping condition for  (1 7) 
f '  determining t 

In effect, there  a r e  (q t 1)  terminal  constraints.  Any one of 

these can be chosen a s  a stopping condition. This is  a n  unnecessary, 

a rb i t r a ry  but useful device. 

Two of the numerical methods for solving such problems a r e  

given below. 

a )  Penalty Function. Method: Objective function J is  modified using a 

quadratic penalty funLtion 

J =  J t q T K *  

where K is a positive-definite mat r ix  of penalty function constants. A 

sequence of unconstrained 7 problems is solved with increasing values 

of K. In the limit as K + 00 we get @ + 0, J + Jopt, 

To check the efficiency of this method, i t  was used to - Uopt' 

solve a number of problems. The method worked quite well on l inear-  

quadratic problems and simple nonlinear problems. Examples 1 and 2 

of Ref .  (6)  were solved in one computer run by using a large enough 

value of K. 

of Ref. (12)  converged in  18 i terations start ing from a stepped nominal 

The minimum time ear th- to-mars  orbit t r ans fe r  problem 

and using about 1 minute of IBM 7094 computer time. 

However, when this method was t r ied  on flight path optimization 

problems involving aerodynamic drag and lift t e r m s ,  the method r a n  into 

difficulties whenever the number of terminal  constraints was increased 

beyond two. The reason seems to be that the "frozen-point" eigen-values of 

-6 -  



the linearized system a r e  split far apar t  due to damping t e r m s .  

define more  clear ly  what we mean by eigen-values of a nonlinear 

system : If we l inearize the equations around some nominal path and 

assume that the coefficients of the linearized equations vary sufficiently 

slowly in  t ime that they may be considered constant over some period 

of time, we may talk about the eigen-values of this system. 

typical problem involving three  state variables,  V (velocity), h (altitude) 

and y (flight path angle), the convergence was extremely slow i f  termi- 

nal constraints were put on a l l  the three state variables simultaneously. 

Since for most  of these problems, the terminal  time is  not specified, 

some sor t  of stopping condition is needed to determine t at each i te ra -  

tion. In this way, one of the constraints is  automatically satisfied. It 

was found that the penalty function method could be used to handle a t  

We 

For  a 

f 

m o s t  two te rmina l  constraints. 

straints,  the convergence was extremely slow. 

If there  were more  terminal  con- 

Various other types of penalty functions can be used. However, 

there  is one common difficulty, viz., addition of penalty functions 

may change the problem completely creating narrow valleys and 

splitting the eigen-values of the system far apart .  

type of behavior is given in  (13, chapter I). 

gradient procedures converge very slowly when the eigen-values of 

the system a r e  split far apar t ,  

b)  Gradient Projection Method: Rosen's gradient projection method 

(14) was used by Bryson and Denham (9)  to  solve optimal control 

problems using a steepest  descent method. 

used with the conjugate gradient method to handle linear terminal  

An example of this 

It is well-known that 

The same method can be 

- 7 -  



constraints (7) .  

the same method should work for nonlinear constraints as well. 

If the step s ize  a is smal l  s o  that l inearization is valid, i * 

Bryson and Denham [9] have derived an  expression for the pro-  

jected gradient, E .  They show that 

where 

L 
0 

Conjugate directions p. a r e  generated using gi, j5i-l and equations 
1 

(6) and (7) .  

control change 6u is given by 

If a change d q  i s  des i red  in the constraint  level, $', the 

The conjugate gradient algorithm is modified as follows: 

- = u. t m.a.p.  
i t 1  1 1 1 1  

U 

(i) Star t  with m = 1 and obtain a. by a one-dimensional search.  
i 1 

If l inearization holds, i t 1  ' (ii) Calculate the value of qitl(tf) using U 

qitl(tf) should be the same  as q ( t  ). 
- 

If not, reduce m. so that 
i f  1 

llFitl - qi  11 < E ,  where i s  a smal l  positive number.  

>IC 

Authors do not have computational experience with this method so far. 

-8 - 



(iii) Choose dt,bi and calculate the corresponding hi. Add this to  

= Ti t 6Ui . i t 1  i t 1  U 

Note that d q .  should not be so  large that the l inearity assumption 

is violated. 

1 

If this algorithm is used on a linear-quadratic problem with l inear 

terminal  constraints, the directions of s e a r c h p  i = 0, n - 1 will be 

conjugate and convergence would be obtained in  a finite number of steps. 

F o r  a nonlinear problem, however, the directions p i = 0, n - 1, wi l l  

not be conjugate ir :  general  due to the addition of 6u f romEq.  (24)at  eachstep.  To 

bypass this difficulty, one may try to satisfy the te rmina l  constraints 

first and then hold them constant using the gradient projection scheme. 

This method would work well i f  the constraints a r e  l inear,  but i f  the 

constraints a r e  highly nonlinear, m. will have to be chosen small  enough 

so that linearization holds. In such a case,  it might be better to approach 

near  the optimum using the penalty function method and then refine the 

solution using the gradient projection method. 

optimization problems, the step size a. gets smaller and smaller as one 

approaches the optimum. 

i’ 

i’ 

1 

Typically, i n  most  of the 

1 

So the linearization assumption would not be 

violated and the gradient projection method would generate conjugate 

directions near the minimum. 

IV. In-Flight Constraints 

There a r e  three types of possible in-flight constraints which may 

be added to the problem statement i n  section 111: 

1. Control variable inequality constraints; N(u, t)  d 0 .  (26) 

2.  Control and state variable inequality constraints o r  mixed 

constraints;  C(x, u, t)  0 . (27) 

3. State variable inequality constraints; S(x, t)  G 0 . (28) 

-9 -  



We f i r s t  describe general  methods (a) ,  (b) and (c )  applicable 

to all of these cases .  Then we describe special  methods (d) and (e )  for 

particular types of constraints. 

a )  Penalty Function Methods 

Consider a sca la r  mixed constraint 

c(x,u, t) d 0 . 
Introduce a new state variable r such that 

i f c > O  

i f c G  0 

where K is a large positive constant and 

r ( t  ) = 0 . 
0 

Then i f  r ( t f )  0, the 

The Interior Penalty 

minimization problems 

constraint c < 0 i s  apgroximately satisfied. 

Method of (8) t r i e s  to solve a sequence of 

L 
0 

where r is a positive sca la r  and tends to zero.  It can be shown that 

this method approaches the constraint boundaries f rom the interior ( 8 ) .  

Our experience has shown that these methods work poorly on 

highly nonlinear control problems. Lasdon e t  al. (8) encounter con- 

siderable difficulty in  solving the re-entry problem. Moreover the 

constraint can never be exactly satisfied because these methods work 

by violation of the constraints. 

-10- 



b)  Transformation of Variables 

M. J .  Box (15) has used this method for solving some nonlinear 

It can be used for optimal control problems programming problems. 

also,  e. g. ,  if a variable S has to be positive, we can use another 

variable y which is unconstrained and is related to S as 

2 
(i) S = y 

o r  

(ii) s = eY 

Similarly, i f  0 G 6 1 

2 (i) S = sin y 

o r  

Y e 
(ii) S = 

ey t e'y 

S S G S  
min max ' If s 

2 - S )s in  y min ('max min  s = s  

(32 )  

( 3 3 )  

(34) 

(35 )  

Then an  unconstrained problem in y space is  solved. 

These methods a r e  applicable to control and mixed type constraints 

only. Moreover, they produce slow convergence near  the boundaries, 

e . g . ,  i f  S S S S S  and the above transformation is used, 
mi n max 

- S )s in2y as 
F =  ('max min 

which will be zero  for 

S min' max 
I1 y = o  ,z o r  for S = S 

C )  Gradient Projection Method 

Bryson, Denham, and Dreyfus (16)  have shown that inequality 

constraints can be handled by solving for a set  of inner-point equality 

(37) 

constraints plus control constraints. Gradient projection can be used 

-11- 



with the c onjugate gradient method to handle inner point constraints 

in  the same  way a s  the terminal  constraints.  The gradient vector g 

i s  computed using equations given by Bryson and Denham (9) .  

conjugate directions a r e  generated separately for the paths before 

and af ter  the inner-point constraint. 

the inner-point constraint is projected on the intersection of two sub- 

spaces viz. those of the inner-point constraints and the terminal  con- 

s t ra ints  whereas the gradient on the a r c  af ter  the inner-point constraint 

is projected on one P :bspace only viz. subspace of the terminal  con- 

s t ra ints .  

The 

The gradient on the a r c  before 

d) Control Variable Inequality Constraints: Bang-Bang Solution 

If the control variable enters  linearly in  the equations of motion 

and in  the performance index of the problem, one can show (1 3 )  that 

the control always l ies  on one of the boundaries. The problem is 

thus reduced to determining the switching t imes.  

d u d u  and i f  t . ' s  a r e  the switching t imes,  then If Urnin max 1 

assuming at  t l ,  u goes from u to u (9) .  max min 

Treating t .  a s  control parameters ,  we can i te ra te  on them to 

If the number of switching t imes  

1 

obtain optimum switching t imes.  

is  unknown, i t  i s  better to s t a r t  with more  switching t imes than anti-  

cipated. 

but i t  cannot add extra switching t imes.  

The above technique can eliminate some switching t imes,  

Then parameter  optimization can be ca r r i ed  out using the 

conjugate gradient method (section Ha). 

-12- 



e )  State Variable Inequality Constraints (SVIC); Separation of Arcs  

This method i s  due to Speyer (17). It is applicable whenever the 

order  of the SVIC is one l e s s  than the number of state variables in 

the system. 

strained a r c s  separately (10). 

constraint boundary depends only on one state variable. 

In such cases ,  i t  becomes possible to compute the uncon- 

One finds that the motion along the 

Using this 

as the variable of integration, the value of the performance index 

along the constraint boundary is expressed a s  a function of the entry 

and exit point values of this variable. 

suitably with objective functions along unconstrained a r c s  and the pro-  

blem i s  reduced to a set  of unconstrained problems.  

and Bryson (10) use this method to solve the problem of range- 

maximization of a re-entry glider (9).  

show that this method i s  very powerful, whenever i t  can be applied to 

problems with SVIC. 

These functions a r e  lumped 

Speyer, Mehra 

The resul ts  obtained by them 

V. Flight Path For  Minimum Time Climb-To-Cruise 

of a V/STOL Aircraft  

Compared to conventional a i r c ra f t ,  V/STOL aircraf t  have an 

ex t ra  control variable, namely the angle between the thrust  direction 

and a reference axis in the a imraf t .  

this extra control variable may be used to improve the performance 

of the aircraf t .  

It i s  of interest  to know how 

If a flight i s  long enough, it can be divided into three paths: 

(i) Climb phase start ing from the ground and going up to some cru ise  

condition; 

(ii) Cruise a t  some constant altitude and velocity; 

(iii) Landing phase. 

-1 3-  



Depending on the particular use to which the V/STOL a i rc raf t  

is put, there  may be flight path constraints on (i) and (iii). 

If the cruise conditions a r e  known, the optimization problem 

reduces to optimization of the two a r c s  (i) and (iii) separately,  be- 

cause the cruise conditions specify the state completely at the end of 

path (i) and a t  the beginning of path (iii). 

Here, we shall  consider the hypothetical jet-lift a i rc raf t  to Ref. 

(l8).:'< Gallant (19) has considered a tilt-wing V/STOL a i rc raf t  and 

obtained minimum-di pect-cost flight paths for  a 50 mile flight 

start ing from the ena af the transition to the beginning of the re t rans i -  

tion. 

Problem Formulation 

The aircraf t  will be approximated a s  a mass-point. Figure 1 

Figure 2 shows the thrust  shows the forces acting on the aircraf t .  

force in  greater detail .  

pointed in  the direction of the relative wind velocity. 

mation is reasonable in  view of the rough model assumed for  the V/STOL 

a i r c ra f t  and in  view of the final resul ts  which show that the angle-of- 

attack is  kept small  during most  of the flight. 

It is  assumed that the je t  inlets a r e  always 

This approxi- 

The equations of motion a r e :  

v = -  * T  . cos (a t i )  - D - g s in  y - 7 M V[1 - cos(a t i ) ]  
m m m 

L M s in(a t i )  t 7 - +cos y t - s in(a t i )  * T  
y = =  m V  rin 

h =  V s i n y  

k =  v c o s y  

::< 
Authors gratefully acknowledge the help and suggestions received 

from Professor  R .  H. Miller and his students a t  the Flight T rans -  
portation Laboratory, Massachusetts Institute of Technology, 
Cambridge, Massachusetts. 
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L + D ~  0 / 
/ 

T 

T 
f 

i Dm = Momentum Drag Along V-axis 

D+Dm r DA = Momentum Drag I To V-axis. m9 

FIGURE 4 

M, 
F V 

RATE OF AIR FLOW = M 

( a c i )  

EXIT VELOCITY OF GASES'Ve 

FIGURE 2 

Force along V axis = F, = MVe cos (Gl+ i ) -  MV 
Force I to V direction = Fy = MVe sin ( C l + i )  

Thrust T =  MVe -MV( Equal net force when ( a + i )  =O) 
0 .  F V = T c o s ( Q + i )  -MV(1-cos(cY+i)) 

F ~ = T  sin (a+i)  + M V  sin (a+i) 



Where 

1 2 
2 L = - p v  CLS Lift 

1 2  
2 Drag D = - P V  CDS 

c L = c  a 

7 

La 
L 

cD = c D  0 

- 5  4 . 2 5 6 1  
Air Density p = . 0023769(1 - . 6875  x 10 h) ( 4 7 )  

Equation ( 4 7 )  holds for h < 36, 000 f t .  

The characterie’.ics of the hypothetical a i rc raf t  a r e  

where h is in  ft.  Thrust T = To ( 1  - 30, . 55h ooo)  

Mass m =- ;::i2 slugs (taken as constant during climb) 

2 
Wing Area  S = 421 ft 

CD = . 0 2 7  
0 

c = 5 . 7 3  
La 

Rate of Air Flow M = T / (65  x 3 2 . 2 )  slugs/sec. 
0 

i f  T i s  i n  lb .  
0 

There a r e  three control variables in  the problem: 

Magnitude of thrust  vector (T  ), (0  4 T 4 T 0 1; 
max 0 0 

Direction of thrust  vector (i); 

Angle of attack (a) or  pitch angle ( e ) .  

- 1 6 -  



It i s  preferable,  to use 8 instead Qf.q,afi the contr.ol va,riable, 

The u.c.elaf @.as, the ,ce..ntr~! vzriable adds extra damping t e rms  ixts 

equations of- moti hichh. help !in .cko,nverg:e.nce .> . . -  -. . . . . . . . 

We shall obtain mimimum t i n e  paths dndanithe dol.lowing 

asl4uwiphlans: ., I 

1) Thrust, To, i s  kept constant a t  i ts  maximum value. 

reasonable assumption for  the climb phase of the flight. 

particular,  we shall  use To = 1. 25  mg. 

2)  Initial conditions for the problem a r e  

This i s  a 

In 

V(0) = 0 , h(0) = 0 , x(0) = 0 

The equation has a singularity a t  V = 0. 

equations of motion numerically, we must  s t a r t  with a finite V. 

To integrate the 

The 

a i rc raf t  would attain this velocity after flying fo r  some time, say t l ,  

i n  some particular manner .  This par t  of the flight may be partially 

o r  completely determined by restrictions on the runway available 

for  take-off, e. g . ,  if the aircraft  mus t  take-off vertically, then 

Y ( t , )  = 90° where t l  will be some t ime either during o r  a t  the end 

of the vertical  take-off period. We will nowconsider a few specific 

cases .  

Unconstrained Take-Off. 

should do i f  there  were no constraints imposed on i t  due t o  the 

To get a n  idea a s  to what the a i r c ra f t  

ground, we shall consider the case in which the a i rc raf t  can even 

go underground. While this case i s  unrealist ic,  it  wil l  provide 

useful information about the optimal paths with constraints.  

do not know whether a V/STOL aircraf t  should take-off like a 

We 

conventional a i rc raf t  (by f i r s t  picking up speed along the runway) 

o r  whether it should take-off directly making some angle Y(0t)  > 0 
* 
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to the horizontal. 

Y(t ) as a control parameter ,  we should be able to answer this 

question. 

If we solve the unconstrained problem treating 

1 

The initial conditions for this case may, therefore,  be taken 

as, (treating t l  a s  start ing time denoted by 0)  

V(0) = 50 ft/sec 

Y(0) chosen to make X (0)  = 0 . 
Y 

(This means that the optimization process  must  drive h (0)  to zero.  ) 
Y 

h(0) = 0 : x(0) = 0 . 

Changing h(0)  from 0 to severa l  hundred feet will not change the resul ts  

si gni fic ant ly . 

The terminal conditions a r e  the c ru ise  conditions. The final 

time, t is to be minimized: f’ 

Y ( t f )  = 0 

h(t ) = 20, 000 ft 

V(tf) f ree  

x(tf) f ree  

f 

A constraint on V(t ) could be met  easily either by changing f 

the path slightly o r  by changing thrust  magnitude towards the end 

of the climb phase. The control variables used are 8 and i. 

Figures 3, 4, 5a, 6, 7, and 8 show the resul ts  obtained 

The opti- for  the case when there  are  no constraints on take-off. 

mum value of $0) a t  V = 50 ft/sec turns out to  be about 7 . 

the interesting fact is that y soon becomes negative and the a i rc raf t  

0 But 

goes about 300 ft underground. Reasons for this seem to be: 

-18- 
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(i) 

(ii) 

The thrust  i s  greater  at lower altitudes; 

The a i rc raf t  should pick up velocity a s  fas t  as possible in  order  

to generate aerodynamic lift. 

is not very efficient because i t  gives lots of momentum drag. 

The angle ( a t i )  is apparently kept low in  order  to keep this drag  

low (cf. Fig. 5a). 

Lift obtained from tilting the je t  

To keep the surface drag  low, angle of attack a is a l so  kept 

small as shown in  Fig. 8.  

helps i t  in  picking up ipeed. 

The a i rc raf t  dives down because gravity 

Figure 4 shows velocity vs. range. 

After the a i rc raf t  has picked up velocity during the diving 

0 maneuver, y increases quickly to a maximum value of 56. 6 

Figure 3 shows how h increases  during this phase. However, 8 a lso  

increases  a t  the same time s o  that a = 8 - y remains small. Jet-t i l t  

angle i i s  a lso kept small .  Thus, the total  d rag  is  kept low. This 

maneuver i s  followed by a rapid change in  8 to a negative value of 

about -25'. 

viz. y(tf) = 0. 

lations show that i f  the a i rc raf t  i s  made to climb vertically all the 

way up from the ground, it takes twice a s  much time. 

i n  that case  never exceeds 300 ft/sec. 

(Fig. 5a). 

This i s  necessary to meet  the terminal  condition on y 

The total  t ime taken by the a i rc raf t  is  53 sec.  Calcu- 

The velocity 

Thus the results show that a V/STOL a i r c ra f t  without take-off 

constraints should fly very  much like a conventional a i rc raf t .  

dynamic lift i s  more  efficient than jet-l if t .  

a i rc raf t  should keep angle-of-attack a small to keep aerodynamic 

drag  low. 

Aero- 

On the other hand, the 
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Horizontal Take-Off Constraint. 

that the a i r c ra f t  cannot go underground. 

along the ground. 

reaches V 

could integrate the equations of motion of the a i rc raf t  on the ground 

to calculate the distance in  which the a i rc raf t  can attain this velocity. 

This a lso indicates that the best  take-off for a STOL aircraft is  to fly 

paral le l  to the ground at  low altitude for a considerable distance. 

Vertical  Take-Off Constraint. 

the a i r c ra f t  must  ily vertically up to a n  altitude of 1000 feet .  

the resul ts  obtained above, it appears that the best  way to do this 

would be to  make 8 = 90 

the V equation gives V = 1 2 5  ft/sec at h = 1000 f t .  

seconds. 

init ial  conditions: 

Let us now impose the constraint 

However, it can s t i l l  run 

Numerical results show that when the aircraft 

300 ft/sec, the optimal path no longer dives down. We 

We now impose the restr ic t ion that 

F r o m  

0 so that a = 0, i = 0, y = 0. Integration of 

Time taken is 8 

The optimization problem is now solved with the following 

V(8) = 125 ft/sec 

$8) = 90° 

h(8) = 1000 f t .  

x(8) = 0 

The resul ts  a r e  shown i n  Figs. 3, 4, 5b, 6, 7, and 8. The 

total  path (from take-off) is 60 seconds long and i s  similar to the 

unconstrained take-off case.  

t ive y, but soon dives down to a minimum altitude of about 980 ft. 

The control variables 8 and i have discontinuities a t  t = 8 sec.  when 

the constraints a r e  relaxed. 

The a i rc raf t  goes up f i r s t  due to  posi- 

, 

Similar behavior would be obtained if the a i rc raf t  were con- 

s t ra ined to take-off at some other constant value of flight path angle 

-27-  



yc. The equation 

t e r m s  of the other (say i in  t e r m s  of 8) .  

8 d y c ,  a s  in the case  above, one would intuitively expect that 8 

would remain constant a t  y 

= 0 determines one of the control variables in  

If 8 is  constrained by 

C' 

VI. Conclusion 

Our computational experience has shown that the conjugate 

gradient method, though very efficient for simple optimization pro-  

blems, may run into difficulties when applied to m o r e  complicated 

problems. 

1. Gradient of the objective function with respect  to the step size 

may not become zero  o r  small  enough during one-dimensional search.  

Accumulation of e r r o r s  due to this source can produce directions of 

search  which increase rather  than decrease the performance index. 

In such cases ,  i t  was found useful to rever t  back to the local gradient 

direction and s tar t  the process  over again. 

to  the one suggested by Beckman (20)  and a l so  used by Fletcher and 

Reeves (2)  for  nonlinear programming problems. 

2 .  

of the linearized system far apar t  and make convergence extremely 

slow. 

plicated, may help in  this case ,  particularly near  the optimum. 

Conjugate Gradient Methods vs .  Steepest Descent Methods: 

Some of the difficulties that may be encountered a r e :  

This procedure is  similar 

Use of penalty functions may split the "frozen-point " eigen-values 

The use of the gradient projection method, though m o r e  com- 

(i) F o r  optimal control problems having either no o r  few constraints,  

c onjugate gradient methods,  though requiring more  programming, 

a r e  fas te r  and lead to a better solution than s teepest  descent  

methods.  F o r  linear -quadratic problems, conjugate gradient 

methods reach the optimum in a finite number of steps.  

-28  - 



(ii) For  optimal control problems with a large number of constraints,  

conjugate gradient methods run  into the above -mentioned diffi- 

culties. 

the one-dimensional search and the directions of search  are no 

longer conjugate to each other. 

nonlinear constraints,  it i s  not c lear  that conjugate gradient 

methods would do better than steepest  descent methods except 

when start ing close to the optimum. 

It then becomes necessary to control the step s ize  during 

In nonlinear problems with 

Conjugate Gradier: Methods vs.  Second Variation Methods: 

(i) Conjugate gradient methods require  less  programming and l e s s  

computation pe r  i teration than second variation methods. 

(ii) Second variation methods require the mat r ix  of second variations 

of the Hamiltonian with respect to the control (H 

singular. 

(iii) Conjugate gradient methods do not converge to extremals  con- 

taining conjugate points, whereas second variation methods 

t r y  to converge towards these extremals .  

( iv) Second variation methods lead to more  accurate  solutions than 

conjugate gradient methods, particularly to better control his - 
tor ies .  

) to be non- uu 

Conjugate gradient methods do not require this. 
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